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Abstract

Intelligibility predictors tell us a great deal about human speech perception, in particular which acoustic factors strongly effect human
behavior, and which do not. A particular intelligibility predictor, the Articulation Index (Al), is interesting because it models human
behavior in noise, and its form has implications about representation of speech in the brain. Specifically, the Articulation Index implies
that a listener pre-consciously estimates the masking noise distribution and uses it to classify time/frequency samples as speech or non-
speech. We classify consonants using representations of speech and noise which are consistent with this hypothesis, and determine
whether their error rate and error patterns are more or less consistent with human behavior than representations typical of automatic
speech recognition systems. The new representations resulted in error patterns more similar to humans in cases where the testing and

training data sets do not have the same masking noise spectrum.
© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

The authors of (Hermansky, 1998; Allen, 1994) inspire
us to (1) examine existing knowledge of human speech per-
ception, (2) employ transformations of speech which sim-
plify the relationship between acoustics and human
perception, and (3) use a task which allows machine recog-
nition behavior to be compared in a comprehensible way
with human behavior (which is phone classification). The
goal of this paper is to examine some qualitative knowledge
of human speech perception, and address questions about
the structure of the classifier humans use to perform phone
transcription.

A great deal of descriptive knowledge exists about
speech perception, including:
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1. Experiments which find “cues” indicating membership
to various phonetic categories by modifying the time-
frequency content of a speech signal and observing
human classifications. Many phonetic categories have
been investigated in this way (Stevens and Blumstein,
1978; Kewley-Port et al., 1983; Cooper et al., 1952;
Jongman, 1989; Hedrick and Ohde, 1993; Repp, 1986,
1988; Sharf and Hemeyer, 1972; Darwin and Pearson,
1982).

2. Measurement of human classification accuracy as a

function of distortion: removal of fine spectral content,
temporal modulations, representation of speech exclu-
sively by formants, etc. (Shannon et al., 1995; Remez
et al., 1981; Drullman et al., 1996; Furui, 1986).

3. Models of human behavior as a function of physical

qualities of a speech communication channel, such as
noise level and filtering. These models of human behav-
ior are called intelligibility predictors. The most notable
are the Articulation Index (French and Steinberg,
1947) and Speech Transmission Index (Houtgast and
Steeneken, 1980).



186 B.E. Lobdell et al. | Speech Communication 53 (2011) 185-194

These studies have contributed greatly to speech and
hearing science, audiology, and psychology; however, they
arguably have little effect on the design of machine speech
recognition systems. This is likely because they describe
human behavior, without attempting to infer how they
do it. This study is different in that it attempts to infer
something about the structure of the human phone
classifier.

Systems, known as intelligibility predictors, were devel-
oped to aid the design of speech communication equipment
and auditoria. They are models of human performance as a
function of parameters of a speech communication chan-
nel. The Articulation Index (Al) models the phone error
rate as a function of masking noise spectrum and channel
filtering. It is described in (French and Steinberg, 1947,
Fletcher and Galt, 1950), reformulated in (Kryter, 1962a;
Miisch, 2000; Allen, 2005), verified in ( Kryter, 1962b;
Ronan et al., 2004; Pavlovic and Studebaker, 1984), and
standardized in (ANSI, 1969, 1997). The accuracy and gen-
erality of its predictions over a variety of acoustic condi-
tions is remarkable.

The AI model of human phone error rate indicates that
the most important factor affecting human performance is
the speech-to-noise ratio as a function of frequency. The Al
is the frequency-average of the non-linearly transformed
speech-to-noise ratio (described in detail in Section 1.2).
There are numerous modifiers which compensate for sharp
filtering, high speech levels, loud maskers, or sharply band-
pass maskers, all of which evoke effects in the auditory
periphery. It may be deduced from the formulation in
(Fletcher and Galt, 1950) that these effects play a relatively
small role in typical listening conditions. In fact, another
formulation (French and Steinberg, 1947) considers fewer
of these peripheral effects presumably because they were
not seen as necessary. There is also empirical evidence that
a reasonably good prediction of intelligibility can be
obtained from an even simpler formulation (Phatak
et al., 2008).

It seems reasonable to expect that the human brain
keeps a running estimate of prevailing noise and filtering
conditions, and uses them to interpret acoustic signals,
including speech. This notion was suggested by Herman-
sky and Morgan (1994), who then developed a representa-
tion of speech which ignored the effects of slowly varying
filtering and noise conditions. It is also substantiated by
Drullman et al. (1994b), which showed that low frequency
modulations do not affect human performance. The effec-
tiveness of the Articulation Index has been thought to
imply that the brain estimates background noise levels,
and only “sees” speech if it is unlikely to have come from
the background noise. French and Steinberg (1947) put
forth this interpretation:

When speech, which is constantly fluctuating in
intensity, is reproduced at sufficiently low level only
the occasional portions of highest intensity will be
heard ...

If W is equal to the fraction of the time intervals that
speech in a critical band can be heard, it should be pos-
sible to derive W from the characteristics of speech and
hearing ... it will be appreciated that there are certain
consequences that can be tested if the hypothesis is cor-
rect that W is equal to the proportion of the intervals of
speech in a band which can be heard. There are. ..

The symbol W is essentially the logarithm of the fre-
quency-specific signal to noise ratio. The intelligibility pre-
diction produced by the Al is essentially the exponent of
the average of W over frequency.

They conclude that the speech-derived estimates of W
are consistent enough with perceptual data to endorse their
hypothesis that 1 is proportional to the percentage of time
intervals during which the speech signal is unlikely to have
come from the noise. They use the phrase can be heard in a
way which seems synonymous with signal detection. Also,
an Al model parameter (denoted p in the formulation by
French and Steinberg (1947)) is specifically related to the
probability distribution of speech (the level in decibels
which is higher than 99% of speech levels), and is employed
in a way which assumes speech is detectable if its level is
greater than a threshold. Two studies (Phatak and Allen,
2007; Pavlovic and Studebaker, 1984) have shown that fre-
quency-specific values for p based on the level distribution
of speech offer a better prediction of human recognition
accuracy, supporting this view. The meaning of W, the
form of the Al prediction of intelligibility, and its relation-
ship to signal detection will be discussed in more detail in
Section 1.2.

The Al predicts average phone error rate for a large
amount of phonetically balanced speech, based on the
average spectrum of speech, and information about the
acoustic conditions. The interpretation of the AI offered
above is based on the average spectrum of speech and aver-
age phone error rate. In this paper we will attempt to deter-
mine whether this interpretation holds for classification of
individual utterances, based on the acoustics of individual
utterances.

1.1. Parameterization of the speech signal

The following paragraphs place this study in the context
of research on machine speech recognition, and human
speech perception.

Standard representations of speech for speech recogni-
tion include the mel-frequency cepstral coefficients
(MFCCs) and perceptual LPC (PLP). Davis and Mermel-
stein (1980) demonstrated that warping the frequency axis
to a perceptually-based scale improves word discriminabil-
ity. Hermansky (1990) demonstrated that an all-pole sum-
mary of the loudness spectrum (PLP) exhibits less inter-
speaker variability than the raw loudness spectrum. Opti-
mization-based approaches have been adopted recently;
for example, transforming the speech signal to maximize
information content (Padmanabhan and Dharanipragada,
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2005), or transforming the speech signal into a form which
can be parsimoniously represented by parametric distribu-
tions used in speech recognition systems (Omar and Hase-
gawa-Johnson, 2004). None of them have supplanted the
MFCCs as the dominant representation of speech for auto-
matic speech recognition. The current study is different
because it seeks to determine whether a representation of
speech in noise is more or less consistent with human
behavior, rather than deriving one more appropriate for
speech recognition systems.

The idea of using representations of speech inspired by
the human auditory system is not new. For example, Her-
mansky (1990) suggests a representation of speech based
on human auditory tuning, level normalization, and com-
pression (which are present in the auditory system). In
(Strope and Alwan, 1997) the authors simulate the dynamic
activity of the auditory system to emulate a phenomenon
called forward masking, and showed that a recognizer
based on it is more robust to background noise than con-
ventional systems. Another representation of speech called
RASTA (Hermansky and Morgan, 1994), is predicated on
an assumption that the brain keeps a running estimate of
noise and filtering conditions, and uses them when recog-
nizing speech. All systems compared in the current study
use an auditory-like representation of speech similar to
PLP (described in Hermansky, 1990). Our intention is to
test a particular representation of speech in noise to deduce
the structure used to classify phones, rather than test the
merits of auditory-like representations of speech, which
we already consider to be important.

Studies about representations of speech in noise, and
models for detection of speech in noise are especially rele-
vant. Experiments have been done (for example in Viemei-
ster and Wakefield, 1991; Durlach et al., 1986) which
demonstrate that Bayes’ rule applied to the probability dis-
tribution of auditory signals can predict human perfor-
mance for some psycho-physical tasks. Hant and Alwan
(2003) show that a similar model also predicts discrimina-
tion of some speech sounds. This paper is meant to expand
the domain of tasks which Bayes’ rule can explain.

1.2. The Articulation Index

The Articulation Index models human phone recogni-
tion accuracy as a function of filtering and masking condi-
tions. Several versions of the Al (mentioned in Section 1)
have been published, which vary in sophistication and cor-
respondingly, their accuracy and convenience. For the sake
of brevity, we will describe the version published in (Allen,
2005) which has good accuracy in typical listening
conditions.

First, speech is filtered into (in this formulation, 30) dis-
joint frequency bands with bandpass filters. The edges of
these bands were chosen to fit empirical data, and are
roughly proportional to the critical bandwidth (Fletcher,
1938; Allen, 1994). The second step is measurement of
the speech and noise root-mean-squared levels in each

bank, denoted here by o, and o,,, respectively, where k
indexes the frequency band.
The Articulation Index is computed from

1 o
Al=5 = Z min (30 1010g10<1 +et k)) (1)

nk

The parameter p (and ¢ = 10”/2°) is related to the quote by
French and Steinberg (1947) in Section 1. They describe p
as the “difference in db between the intensity in a critical
band exceeded by 1% of ith second intervals of received
speech and the long average intensity in the same band,” de-
picted in Fig. 1. Thus p (and c) are related to the threshold
which is thought to determine whether humans “hear”
speech at a particular frequency and time. French and
Steinberg (1947) use A in place of our symbol Al and repre-
sent the argument of the summation in Eq. (1) with W. They
hypothesize that W “is equal to the fraction of the time
intervals that speech in a critical band can be heard” which,
in terms of Fig. 1, suggests some level on the abscissa which
represents a threshold: speech intervals above the threshold
can be heard and those below the threshold cannot. They
suggest W could be computed by integrating the speech
probability distribution in Fig. 1 above this threshold.

The probability of a human incorrectly identifying a
phone can be computed from the Articulation Index (Eq.
(1)) with

Pe = ey, @)

where e,,;, 1S a parameter equal to approximately 0.015.

1.3. Hypothesis statement

The experiment described in this paper is meant to test
the hypothesis that humans’ phone transcriptions for an
acoustic waveform are based on the time-frequency sig-
nal-to-noise ratio rather than the short-time spectral level:
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Fig. 1. This cartoon shows the probability distribution of speech and
noise levels in 0.125 s intervals. It also illustrates the Al model parameter p
from (French and Steinberg, 1947) in relation to the speech and noise level
distributions.
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A particular time-frequency sample will affect classification
only if that sample is unlikely to have resulted from the pre-
vailing noise level in that spectral channel. This is a difficult
proposition to test directly because many samples interact
with each other in the brain, and our perceptual experi-
ments are not sensitive enough to measure the effect of a
single sample. Rather than attempt to directly test this
hypothesis, which in our view is ill advised, we will classify
speech sounds with several representations of speech, and
examine the results to see which are most consistent with
human classifications.
Four representations of speech will be tested:

1. The power spectrum. Many automatic speech recogni-
tion systems observe a linear transform of the log power
spectrum (mel-frequency cepstral coefficients), therefore
the power spectrum maybe considered analogous to
those usually used in speech recognition. These will be
referred to as the STF (spectro-temporal features).

2. A representation based on the Articulation Index, which
is essentially the speech-to-noise ratio as a function of
time and frequency. This will be referred to as the AIF.

3. A thresholded version of the AIF. A particular time-fre-
quency pixel is unity if its SNR is greater than some
threshold, and zero otherwise. These will be referred to
as the AIBINF (“BIN” for binary).

4. A version of the STF enhanced by spectral subtraction,
which is called SSF.

This study will evaluate these speech representations
based on the similarity between the mistakes they produce
and the mistakes produced by humans in the same acoustic
conditions. Greater consistency between human and
machine errors is interpreted to mean greater similarity
between the human recognition process and the classifier
implied by a particular representation. The recognition
accuracy provided by the various feature types will be com-
pared, since a better performing feature type will be of
interest to speech recognition researchers.

If the AIF leads to mistakes similar to those made by
humans, it will support our hypothesis that humans esti-
mate the prevailing noise spectrum and represent speech
as an SNR spectrum rather than as the power spectrum
of the noisy signal (as in the STF). The drop in perfor-
mance between AIF and AIBINF determines how much
information is gained by using a high level-resolution rep-
resentation of the signal (as in the AIF) rather than only a
single bit (1 = detected, 0 = not detected) for each time/fre-
quency pixel. The SSF are included because the AIF fea-
tures will be of less engineering interest if they do not
provide an advantage over the simple and ubiquitous noise
removal technique called spectral subtraction.

1.4. Synopsis

Section 2 describes the speech representations used to
test our hypotheses, the human speech classification

experiments, the machine speech classification experi-
ments, and the metric used to compare results from them.
Section 3 shows the recognition accuracies for each exper-
iment, the relative performance of the various feature
types, the similarity between the human and machine mis-
takes, and the most evident conclusions. The final section
discusses their implications to the hypothesis presented
above.

2. Methods
2.1. Speech materials

The stimuli used in this study are consonant-vowel
sounds from the “Articulation Index Corpus” published
by the Linguistic Data Consortium (Catalog #LDC2005S
22). The sixteen consonants [/p, t, k, f, 0, s, [, b, d, g, v,
0, z, 3, m, n/] are paired with vowels in all experiments.
The average duration of the speech sounds is 500 ms.

The machine experiment uses the sixteen consonants
paired with ten vowels, and approximately fifty examples
of each consonant-vowel pair. The total number of sounds
is approximately 16 consonants x 10 vowels x 50 tokens
= 8000 speech sounds. The vowels used were [/z, A, &, 1,
U, a6 1,0, u/].

The human experiments use a smaller number of vowels
to limit the experiment time. The experiment with speech
spectrum noise paired each of the sixteen consonants with
four vowels, which were [/a, ¢, 1, 2/]. There were fourteen
examples of each consonant-vowel pair. The total number
of sounds is 16 consonants x 4 vowels x 14 tokens = 896
speech sounds. The experiment with white spectrum noise
paired each of the sixteen consonants with a single vowel,
which was [/a/]. There were 18 examples of each conso-
nant-vowel. The total number of sounds is 16 conso-
nants x 1 vowel x 18 tokens = 288 speech sounds.

2.2. Speech representations

The speech signal is analyzed by a filter bank consist-
ing of 15 filters having frequency limits [155, 318, 478,
611, 772, 966, 1200, 1481, 1821, 2230, 2724, 3318, 4029,
4881, 5909, 7174] Hz. The filters are 5th order elliptical,
with ripple of 2% and stop band suppression of 60 dB.
The output of the filters are narrow-band signals unsuit-
able for sampling, so the envelope of the filter outputs
are extracted by rectification and filtering (the envelope
filter has a cutoff frequency of 60 Hz Drullman et al.,
1994a). The resulting envelope of the filtered speech signal
for band k is si(f). The speech sounds are manually
aligned by the oral release, and sampled 70 ms before
the release to 70 ms after the release at intervals of
17.5 ms. The resulting data rate is 15 frequency chan-
nels x 1/0.0175 samples per second = 857.14 dimensions
per second. Fifteen filters and nine sample times
(=70 ms to +70 ms, every 17.5 ms) provides a 135-dimen-
sional representation of each speech token.
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2.2.1. Baseline features

The baseline representation (denoted STF) is a non-
whitened version the MFCCs typically used in automatic
speech recognition. The symbol s,(7) refers to the envelope
of the signal proceeding from the kth filter. The 135-dimen-
sional representation of a speech token is the logarithm of a
sampled version of si(¢), which is logsi(0.0175n) for
k=0,...14, and n = —4,.. .4.

2.2.2. Articulation Index-based features

The Articulation Index-derived representation (denoted
AIF) is computed from s,(¢) and estimates of the noise level
E[n}(¢)] and E[ni(1)] with

E[m(0)] + (st(6) — E[m(0))’
Eln (1)) '

ax(t) = logy, 3)
The symbols E[n(7)] and E[n}(¢)] are the time-average of
si(7) and s7(¢), respectively, when the input to the system
is the masking noise without speech. Eq. (3) is not identi-
cally equivalent to a time-unrolled version of the Articula-
tion Index but is a close approximation which has the
crucial properties that (1) it fluctuates randomly around 0
when s,(7) is only noise, (2) as the speech-to-noise ratio
grows, the function approaches Eq. (1), and (3) most
importantly «.(z) is small for segments of noisy speech
which are likely to contain only noise. Item (3) is the prop-
erty of the Articulation Index formula which French and
Steinberg (1947) hypothesize explains its predictive power.

The representation used for machine classification in
this study is a sampled version of a(f), which is
a;(0.0175n) for k=0,...14, and n = —4,...4. This repre-
sentation is denoted AIF.

2.2.3. Binary Al-based features

This representation (denoted AIBINF) is a thresholded
version of the AIF. The value is 1 if Eq. (3) is greater than
0.3, and 0 otherwise. This can be interpreted to mean that a
pixel will be labeled “1” if there is greater than 99.9%
chance that the observed level was speech and not noise.

2.2.4. Spectral subtraction features
Spectral subtraction is a technique that can be used to
mitigate the effects of noise on speech recognition (Boll,

1976).
The signal model is
Y(0) = IS(@)]” + |D()]’, (4)

where | Y(w)| is the magnitude spectrum of the noisy speech
(and £ ¥(w) is its phase). The symbol | D(w)|* represents the
known power spectrum of the noise. The symbol S(w) is
the spectrum of the undistorted speech signal. The known
power spectrum of the noise is subtracted from the power
spectrum of the noisy speech and the enhanced noisy
speech is reconstructed using the phase of the noisy speech.
The spectrum of the enhanced version is

S() = (|Y(@)f = |D(w) ). (5)

The spectral subtraction technique is implemented via the
analysis-modification-synthesis methodology. The spec-
trum of the noisy speech Y(w) is obtained by fast Fourier
transform in small blocks, which mitigates the effect of
the noisy phase signal /Y(w). The block size used in this
study is 10 ms. The speech is modified in the spectral do-
main according to Eq. (5). The enhanced speech $(¢) is
synthesized from S(w) using the inverse FFT. The repre-
sentation used for machine classification in this study is a
sampled version of 3(¢), which is 5,(0.01751) for
k=0,...14, and n= —4,...4. This representation is de-
noted SSF.

2.3. Human perception experiments

Machine classifications are compared with human clas-
sifications in an analogous experiment: classification of iso-
lated consonant-vowel syllables. Human -classifications
were collected in two experiments conducted at the Univer-
sity of Illinois. All test subjects had normal hearing and
were from the University of Illinois community. The exper-
iment was administered by an automatic computer pro-
gram which tabulated the listeners’ classifications of the
speech materials. The listeners heard the sounds over Sen-
nheiser HD265 headphones, generated by a “Soundblaster
Live!” sound card, inside an Acoustic System model 27930
anechoic chamber. The experiment in white noise involved
the 16 consonants paired with the vowel /a/ at [Clear, 12,
6, 0, —6, —12, —15, —18] dB speech-to-noise ratio. The
experiment in speech spectrum noise involved consonants
paired with the vowels /a, ¢, 1, &/ at [Clear, —2, —10,
—16, —20, —22] dB speech-to-noise ratio. Response proba-
bilities for these experiments were calculated for each
talker, consonant, vowel, and speech-to-noise ratio condi-
tion. More details about these experiments can be found
in (Phatak and Allen, 2007; Phatak et al., 2008).

2.4. Automatic speech classification experiment

An asymptotically Bayes optimal pattern recognizer is
used to (1) avoid assumptions about the statistics of the
features (e.g. that the dimensions are uncorrelated, or that
they conform to some parametric distribution) and (2)
achieve above-chance recognition accuracy at the deeply
negative speech-to-noise ratios used in the human
experiments.

The speech sounds described in Section 2.1 are classified
by a K-nearest neighbors based classifier (K = 9), using the
four representations of speech described in Section 2.2. The
speech sounds were from the same corpus as in the human
experiment, but involved more examples of each conso-
nant. The output of the classifier was a consonant label.
Each of the 16 consonants was exemplified by approxi-
mately 500 utterances, with a total of 7768 (approximately
16 x 500) token for all consonants. Consonants were
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classified using 7768-fold cross validation: Each token was
classified by computing the Euclidean distance in the 135
dimensional feature space between itself and each other
token; the assigned class was the most frequently occurring
class among its K closest neighbors. Noisy versions of each
sound were created, which had the same noise level and
spectrum as those used in the human experiments. Ten
noisy realizations were mixed with each token and classi-
fied to generate the response probabilities in noise.

Robustness to a variety of acoustic conditions is an out-
standing quality of speech recognition by humans. The clas-
sifier will classify the sounds with various mismatches
between the testing and training conditions to contrast the
behavior of the various systems with human behavior in this
important case. The sounds are classified in white noise at
[12, 6, 0, —6, —12] dB SNR, and in speech spectrum noise
at[2, —4, —10, —16, —22]dB SNR. Each possible mismatch
will be tested, so there will be {4 feature types} x {2 test
noise spectrum} x {5 test SNR} x {2 training noise spec-
tra} x {5 training SNR} = 400 conditions.

2.5. Comparison metric for response probabilities

A symmetrized Kullback—Liebler (KL) metric is used to
compare human and machine response probability distri-
butions. The KL-metric is a measurement of the difference
between a pair of probability distributions. It has the unit
of bits (if the logarithm has base 2) and its minimum value
is zero when the distributions being compared are identical
(Cover and Thomas, 2006).

The comparison metric should be symmetric (as we have
no basis on which to order its arguments), and it should be
finite even if one probability mass function has outcomes
with zero probability and the other does not. For that rea-
son we will use the following adaptation of the KL-metric,
which is symmetric and always finite.

1 P 9
Dipg) =3 | 2oplog 5=+ ) qjlog =m0 |
P, 9) 2(217 802 + 4,2 ;q] gl%/-/2+‘1f/2>
(6)

where p; and ¢; are probability mass functions for human
or machine classifications. The symbol i indexes the re-
sponse options /p,t.k.f,0,s, [,b,d,g,v,0,z,3,m,n/. The
arguments p,; and ¢; are a particular row j of the confusion
matrices being compared Py jumen and Py yachine- Py 18 the
probability that symbol i was classified as symbol j. Section
3 will compare Py uman and Py ymachine-

3. Results

In this section we will summarize the results of the exper-
iment: recognition accuracy, and similarity to human
response patterns. The first is relevant to evaluating the
Al-based features’ value for automatic speech recognition,
and the second to our hypothesis about human speech
perception.

Fig. 2 shows data from a subset of the conditions. Panels
(a) and (d) of Fig. 2 show recognition accuracies for the
conditions where the test noise spectrum and level match
the training noise spectrum and level. The SSF provides
the best recognition accuracy in these conditions, exceeding
the recognition accuracy of the AIF and STF by a few per-
cent. The AIBINF has markedly lower performance in
these conditions. Panels (b) and (c) of Fig. 2 show cases
where the test and training noise spectrum are different.
In these cases, the AIF or AIBINF provide the best perfor-
mance at the 3-4 lowest speech-to-noise ratios, while the
SSF provide best performance at the highest 1-2 speech-
to-noise ratios. Human recognition accuracy is substan-
tially greater than all the machine systems. Humans did
not need to be trained to perform well in either white noise
or speech-shaped noise; human speech recognition accura-
cies are plotted only in comparison to the “matched” auto-
matic classification experiments (subplots (a) and (d)). The
recognizer correctly classified 74.7% of the speech sounds
in clear using the STF (SSF is equivalent to STF, and
AIF, AIBINF are undefined in the absence of noise), while
humans achieved 90% in clear.

Table 1 shows recognition accuracy results for all 400
conditions in the machine experiment. The column indi-
cates which noise condition was used to train the classifier,
the row indicates which noise condition was classified.
Each cell of the table contains four numbers, which show
the recognition accuracy in percentage arranged as follows:

SSF/STF
AI/AIBINF

Fig. 3 shows which representations achieved the highest
recognition accuracy in each condition shown in Table 1. A
red cell (with “x”) indicates that SSF had the highest recog-
nition accuracy, blue (with “"*”) indicates AIF, and yellow
(with “*”) if AIBINF had the highest accuracy. The base-
line features STF never had the highest recognition accu-
racy. The SSF wusually had the highest recognition
accuracy when the testing and training noise spectra were
the same (upper-left and lower-right quadrants), although
the AIF and AIBINF were often better in cases where there
was a large mismatch in noise level. The AIF or AIBINF
usually had a much larger advantage when they were best,
than did SSF or STF.

Table 2 compares human and machine error patterns for
each condition using the metric describe in Section 2.5.
Each cell of Table 2 and approximately fifty examples of
each consonant-vowel Eq. (7):

1 16
E Zl D(Pij,humam Pik,machine) . (7)

There are 400 machine confusion matrices Pj; ,nachine, result-
ing from 100 noise testing and training conditions, and the
four systems described in Section 2.2. The human probabil-
ity distribution Py j,man, 1s the same in each row of Table 2.
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Fig. 2. This figure shows the recognition accuracies for the four systems tested in the machine experiment, and the human experiment. The upper-left and
lower-right plots show the case where the testing and training noise spectra are same. The upper-right and lower-left plot show cases where the testing and
training noise spectra are mismatched. In the same-noise spectra conditions, the recognition accuracies are approximately equal, with a slight advantage
for the SSF. In the mismatched conditions, the AIF or AIBINF have an advantage.

Fig. 4 shows which representation has the smallest distance
to human error patterns. The STF usually has the smallest
distance (most similar) to human error patterns when the
testing/training data were matched, however in mismatched
cases the AIF or AIBINF usually have the smallest distance.

4. Discussion
4.1. Review of hypotheses

Humans do not suffer from train-test mismatch in
speech classification problems, but machines do. An auto-
matic classifier using Al-based features suffers less than a
classifier using spectral subtraction: its classification accu-
racy is higher, and its confusion matrices more closely
resemble the confusion matrices produced by human sub-
jects (lower symmetrized KL divergence).

Classification accuracy and KL divergence are corre-
lated in only two respects: they are degraded by train-test
mismatch, and the degradation is usually reduced by use
of AIF or AIBINF. In many cases, classification accuracy
is a poor predictor of KL divergence and vice verse.

4.2. Value for engineering problems

The Al-based features were not far from the perfor-
mance of SSF in matched cases, and exceeded the

performance of SSF in mismatched cases. Automatic
speech recognizers are often brittle to changes in acoustic
conditions, making a representation robust to such changes
valuable. The feature types tested here are not yet well sui-
ted for a practical recognizer because dimensions of the
feature space will be correlated, and cannot be represented
efficiently by parametric probability distribution models
used in speech recognizers. We also have not provided a
means to estimate the noise level, or investigated how the
brain measures the noise spectrum, although such methods
are available (Martin, 2001; Lee and Hasegawa-Johnson,
2007).

The AIBINF features performed best in some condi-
tions, and never much less that the best performing fea-
tures even though their data rate is a small fraction of
the data rate of the other feature-types tested. This could
be useful in that it would greatly reduce the training data
requirements, and simplify the acoustic model, as each
state emission probability distribution is now (multivari-
ate) Bernoulli rather than multivariate Gaussian.

4.3. Limitations

There are some issues with the experiment which bear
mentioning. The K-nearest neighbors recognizer was used
because it is asymptotically Bayes optimal (i.e., with an
infinite number of training examples). However the number
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Table 1
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This table shows recognition accuracies from the machine experiment. Each cell shows the results for a particular (testing noise spectrum and
SNR) x (training noise spectrum and SNR) condition. Each cell contains four numbers, which correspond to each of the four feature types. Upper-left is
SSF, upper-right is STF, lower-left is AIF, lower-right is AIBINF.

Test SNR Train SNR
12 6 0 -6 -12 2 —4 -10 -16 -22
12 65/62 53/46 24/16 9/8 6/6 46/35 28/19 15/10 9/9 8/7
61/57 40/44 15/21 3/7 4/4 33/37 23/31 15/19 9/9 7/6
6 58/54 59/55 43/34 13/11 7/7 45/36 30/21 16/13 10/9 8/8
52/49 53/52 31/35 11/16 4/6 37/36 29/37 20/25 11/11 8/7
0 43/35 52/45 52/47 30/23 9/8 37/26 31/22 17/12 10/8 8/7
33/33 43/44 46/42 22/24 9/8 37/35 35/39 23/27 17/12 11/9
-6 25/18 31/24 41/34 42/38 18/15 22/14 21/13 16/11 9/8 7/7
18/12 24/22 34/33 38/31 16/15 28/22 34/34 31/30 19/17 15/14
-12 11/9 15/11 19/15 28/23 27/24 10/7 11/7 10/8 9/9 7/7
14/11 17/15 21/19 27/24 27/20 21/16 27/22 31/26 24/19 17/15
2 44/33 32/23 22/16 13/10 9/8 66/63 52/46 22/17 10/9 7/7
32/36 26/29 19/20 12/15 6/7 64/59 42/45 18/20 9/10 7/7
—4 41/31 32/22 23/17 16/11 10/9 60/55 61/57 40/33 14/11 8/8
31/30 28/31 24/24 19/19 10/10 55/50 58/55 32/34 13/15 8/9
-10 33/26 29/24 23/17 16/11 10/8 44/38 52/47 53/50 26/22 9/8
32/25 29/28 25/25 22/23 17/17 37/34 49/46 50/44 22/21 9/11
—-16 22/17 24/17 21/14 13/9 8/6 28/22 35/28 40/37 40/38 17/15
25/20 25/23 21/20 19/17 19/16 29/21 35/29 42/35 39/28 17/15
-2 14/12 16/11 15/11 12/10 8/7 17/14 21/17 25/22 29/27 25/23
26/23 26/24 23/21 18/17 15/12 20/19 23/24 29/27 33/24 25/16
E 5
£ 5
o 38

12 6 O

-6 -12 2
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0

-6 -12 2

-10 -16 -22

Train Condition

Fig. 3. This is a graphical representation of the data in Table 1 showing
which system had the highest recognition accuracy in each testing/training
condition. A cell is red (with “x”) if SSF had the highest recognition
accuracy, blue (with “”) if AIF had the highest accuracy, and yellow
(with “ ) if AIBINF had the highest accuracy. The baseline features STF
never had the highest recognition accuracy. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

of training examples used in this experiment is finite, so the
relative performance of the four systems tested might be
different if there were more training data. The parametriza-
tion of speech will also effect the relative performance of
each response alternative. Another smaller experiment
was conducted to relieve these concerns. It involved recog-
nizing three categories, using three different classifiers: K-
nearest neighbors, multi-layer perceptron, and Gaussian

Train Condition

Fig. 4. This is a graphical representation of the data in Table 2 showing
which system had the smallest KL-metric from human behavior in each
testing/training condition. A cell is red (with “x”) if SSF had the lowest
KL-metric, green (with “0”) if STF had the lowest KL-metric, the blue
(with “”) if AIF had the lowest KL-metric, and yellow (with “*”) if
AIBINF had the lowest KL-metric. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of
this article.)

PDF. The stop consonants /p,t,k,b,d, g/ were categorized
by place of articulation [bilabial, alveolar, velar]. The
speech sounds were represented only by the spectrum of
the release burst for the stop consonants (15 spectral
slices x 2 time slices), rather than by the 135 dimensions
used in the primary experiment. The neural network had
30 input nodes and 17 hidden nodes. The Gaussian PDF
model has 30 dimensions. The relative classification
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This table shows the KL-metric between machine classifications and human classifications in the same test condition. Each cell shows the results for a
particular testing/training noise spectrum/SNR condition. Each cell contains four numbers, which are for each of the four feature types. Upper-left is SSF,
upper-right is STF, lower-left is AIF, lower-right is AIBINF.

Test SNR Train SNR
12 6 0 -6 -12 2 —4 -10 —16 -22
12 12/.13 .16/.19 .27/.34 45/.54 .68/.75 31/.43 31/.41 .38/.47 .52/.61 .68/.74
.14/.17 .20/.25 .36/.42 .55/.70 .66/.72 .38/.36 40/.43 .39/.51 .50/.54 .50/.58
6 .16/.20 12/.14 17/.21 .34/.41 .57/.65 42/.51 41/.53 41/.48 48/.60 .61/.73
.25/.23 15717 .22/.23 41/.47 .55/.62 43/.38 .37/.36 .37/.42 47/.47 47/.51
0 .39/.49 .18/.23 .12/.14 .19/.24 41/.48 47/.56 47/.56 49/.57 49/.61 .61/.72
.52/.40 27/.24 15/.18 .23/.24 41/.47 49/.46 .39/.39 .34/.35 45/.47 43/.46
—6 .62/.67 .45/.48 .19/.24 12/.12 21/.24 .53/.61 .50/.58 .49/.61 .59/.71 .60/.66
.76/.64 .53/.42 .27/.26 .13/.19 .23/.28 .58/.54 .39/.42 .34/.34 .40/.45 .39/.39
-12 .64/.65 .59/.61 .45/.48 .20/.23 11/.11 .54/.56 .54/.59 .52/.60 .65/.72 .68/.64
78177 .70/.60 .56/.44 .25/.26 .13/.20 .76/.73 .54/.53 .33/.34 .29/.33 .33/.33
-2 41/.52 .38/.49 .38/.48 .49/.61 .66/.74 15/.17 12/.14 .22/.25 .39/.46 .58/.63
.55/.40 .40/.34 .33/.31 .38/.40 47/.55 .19/.20 .13/.15 .24/.25 .38/.44 .53/.58
-10 .54/.59 .52/.57 .53/.61 .49/.61 .57/.64 43/.52 .18/.24 .09/.10 .17/.20 .36/.40
.65/.52 .61/.44 47/.38 .29/.31 .29/.32 .59/.48 .25/.25 .10/.14 .17/.21 .30/.34
—16 .56/.52 .49/.49 .51/.53 .59/.65 .57/.59 .57/.61 45/.48 .23/.27 .09/.09 17/.18
.81/.77 .61/.60 .58/.58 .49/.52 .27/.43 71/.67 .58/.60 .31/.39 .09/.19 .14/.27
-22 .60/.51 45/.44 .46/.48 .52/.55 .59/.62 .70/.68 .63/.62 .53/.53 .31/.35 12/.13
.86/.87 74174 .66/.66 .58/.64 .50/.69 .82/.82 .78/.76 .70/.71 43/.61 .15/.55

accuracy of the AIF and STF were roughly the same as in
the primary experiment, and the performance of the three
classifier systems were also roughly the same. The similarity
of performance between three types of classifiers, and con-
sistency of results with the first experiment relieves our con-
cern that the result in the first experiment is a fluke (see
Table 3).

It was suggested in one of the original papers about the
Articulation Index (Fletcher and Galt, 1950) that the
human behavior for some speech sounds is best modeled
by a function of the speech-to-noise ratio (denoted R-M)
while some other sounds are better modeled by a function
of the speech spectrum (denoted R):

There have been two points of view advanced as to
how an observer interprets the speech sounds in the
presence of a noise. The first point of view assumes
that the relative position of the speech components

Table 3

This table summarizes results from a smaller classification experiment, the
purpose of which was to demonstrate that the results of the larger
experiment in this paper were not an artifact of the classifier used. Each
cell shows the difference P(AIF) — P(STF) averaged over three classifiers
(which were MLP, Gaussian PDF-based, and K-nearest neighbors). The
second number in each cell (right of “/”) shows the standard deviation
over the three classifiers. In all cases the standard deviation over classifiers
is relatively small. In the matched cases, the difference between AIF and
STF performance is not significant, and the mismatched case it is, a result
consistent with the larger experiment discussed in this paper.

SNR High Mid Low
Matched 1.4/3.3% 7.6/9.5% 2.5/3.8%
Unmatched 8.4/2.0% 11.2/2.8% 11.1/1.7%

with respect to the threshold in the noise determines
the factor F in Eq. (19). According to this point of
view the effective response has been lowered by the
threshold shift M due to the noise, so that the quantity
R-M takes the place of R in determining the factor F.
The second point of view, which was taken by one of
the present authors in an earlier formulation of this
theory, assumes that the level of the speech compo-
nents with respect to each other is the principle influ-
ence in determining F.

The articulation tests indicate that some of the sounds of
speech act in accordance with the first assumption, while
the other sounds follow the second assumption.

The experiment described in this paper does not attempt
to test the statement in (Fletcher and Galt, 1950), so the
effect they describe may cloud our result. If their hypothesis
is correct, better recognition accuracy (and similarity to
human error patterns) could be achieved by recognizing
each consonant (or sub-phone unit) with the most appro-
priate feature-type (AIF or STF). However, we do not have
a priori knowledge of which system to use on each conso-
nant, and some hard to justify choices would have to be
made about how to combine information from each of
the recognizer systems.

5. Conclusions

We classified speech sounds with several representations
of speech meant to help us determine which representation
is more consistent with human behavior.
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The Al-based representations performed better and had
error patterns more consistent with humans in cases where
the testing and training noise spectrum or level were mis-
matched. This property could be valuable in a practical rec-
ognizer because robustness to changes in conditions is a
major problem in speech recognition.

A thresholded version of the Al-based features did sur-
prisingly well, and may indicate that precise representation
of the spectrum level is not particularly relevant for the
task.
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